An Efficient Algorithm for Earth Surface Interpretation from Satellite Imagery
نویسندگان
چکیده
Many image segmentation algorithms are available but most of them are not fit for interpretation of satellite images. Mean-shift algorithm has been used in many recent researches as a promising image segmentation technique, which has the speed at O(kn2) where n is the number of data points and k is the number of average iteration steps for each data point. This method computes using a brute-force in the iteration of a pixel to compare with the region it is in. This paper proposes a novel algorithm named First-order Neighborhood Mean-shift (FNM) segmentation, which is enhanced from Mean-shift segmentation. This algorithm provides information about the relationship of a pixel with its neighbors; and makes them fall into the same region which improve the speed to O(kn). In this experiment, FNM was compared to well-known algorithms, i.e., K-mean (KM), Constrained K-mean (CKM), Adaptive K-mean (AKM), Fuzzy C-mean (FCM) and Meanshift (MS) using the reference map from the Landsat. FNM provided better results in terms of overall error and correctness criteria.
منابع مشابه
Recognizing the eroded areas using the surface albedo algorithm of Landsat 8 satellite imagery (case study of basin Jajrood)
Soil is one of the most important natural resources of any country. the erosion causes not only the depletion of the soil and the loss of the land, causing great and irreparable damages, but also with the deposition of materials in streams, reservoirs, ports, and reduced pool capacity. Therefore, it should not be underestimated. In this study, we identify and zoning of the erosion areas in the ...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملEvaluation of the ability of different algorithms and visual interpretation of Google Earth images in the separation and classification of plant ecological units
Background and objectives: Satellite images and remote sensing technology are recognized as efficient and modern tools for extracting information related to earth sciences, which make it possible to evaluate and monitor ecosystems at a lower cost than field methods. One of the most important methods of extracting information from satellite data is various image classification techniques. The pr...
متن کاملScheduling a constellation of agile earth observation satellites with preemption
In this paper, we consider a scheduling problem for a set of agile Earth observation satellites for scanning different parts of the Earth’s surface. We assume that preemption is allowed to prevent repetitive images and develop four different preemption policies. Scheduling is done for the imaging time window and transmission time domain to the Earth stations as well. The value of each picture ...
متن کاملDevelopment a split window algorithm to estimate land surface temperature from Sentinel -3 satellite data
Land Surface Temperature (LST) is an important indicator of the study of energy balance models at the earthchr('39')s surface and the interactions between the Earth and the atmosphere on a regional and global scale. To date, different algorithms have been developed in the last few decades to determine the land surface temperature using various satellite images. In this study, a new split window...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016